
Short List of MySQL Commands

Conventions used here:

 MySQL key words are shown in CAPS

 User-specified names are in small letters

 Optional items are enclosed in square brackets []

 Items in parentheses must appear in the command, along with the parentheses

 Items that can be repeated as often as desired are indicated by an ellipsis ...

Quoting in MySQL statments

 Don't quote database, table, or column names

 Don't quote column types or modifiers

 Don't quote numerical values

 Quote (single or double) non-numeric values

 Quote file names and passwords

 User names are NOT quoted in GRANT or REVOKE statements, but they are quoted in other

statements.

General Commands

USE database_name

Change to this database. You need to change to some database when you first connect to

MySQL.

SHOW DATABASES

 Lists all MySQL databases on the system.

SHOW TABLES [FROM database_name]

 Lists all tables from the current database or from the database given in the command.

DESCRIBE table_name

SHOW FIELDS FROM table_name

SHOW COLUMNS FROM table_name

These commands all give a list of all columns (fields) from the given table, along with column

type and other info.

SHOW INDEX FROM table_name

 Lists all indexes from this tables.

SET PASSWORD=PASSWORD('new_password')

 Allows the user to set his/her own password.

Table Commands

CREATE TABLE table_name (create_clause1, create_clause2, ...)

 Creates a table with columns as indicated in the create clauses.

 create_clause

column name followed by column type, followed optionally by modifiers. For example, "gene_id

INT AUTO_INCREMENT PRIMARY KEY" (without the quotes) creates a column of type

integer with the modifiers described below.

 create_clause modifiers

 AUTO_INCREMENT : each data record is assigned the next sequential number when it is

given a NULL value.

 PRIMARY KEY : Items in this column have unique names, and the table is indexed

automatically based on this column. One column must be the PRIMARY KEY, and only

one column may be the PRIMARY KEY. This column should also be NOT NULL.

 NOT NULL : No NULL values are allowed in this column: a NULL generates an error

message as the data is inserted into the table.

 DEFAULT value : If a NULL value is used in the data for this column, the default value is

entered instead.

DROP TABLE table_name

 Removes the table from the database. Permanently! So be careful with this command!

ALTER TABLE table_name ADD (create_clause1, create_clause2, ...)

 Adds the listed columns to the table.

ALTER TABLE table_name DROP column_name

 Drops the listed columns from the table.

ALTER TABLE table_name MODIFY create_clause

Changes the type or modifiers to a column. Using MODIFY means that the column keeps the

same name even though its type is altered. MySQL attempts to convert the data to match the new

type: this can cause problems.

ALTER TABLE table_name CHANGE column_name create_clause

Changes the name and type or modifiers of a column. Using CHANGE (instead of MODIFY)

implies that the column is getting a new name.

ALTER TABLE table_name ADD INDEX [index_name] (column_name1, column_name2, ...)

CREATE INDEX index_name ON table_name (column_name1, column_name2, ...)

Adds an index to this table, based on the listed columns. Note that the order of the columns is

important, because additional indexes are created from all subsets of the listed columns reading

from left to write. The index name is optional if you use ALTER TABLE, but it is necesary if

you use CREATE INDEX. Rarely is the name of an index useful (in my experience).

Data Commands

INSERT [INTO] table_name VALUES (value1, value2, ...)

 Insert a complete row of data, giving a value (or NULL) for every column in the proper order.

INSERT [INTO] table_name (column_name1, column_name2, ...) VALUES (value1, value2,

...)

INSERT [INTO] table_name SET column_name1=value1, column_name2=value2, ...

Insert data into the listed columns only. Alternate forms, with the SET form showing column

assignments more explicitly.

INSERT [INTO] table_name (column_name1, column_name2, ...) SELECT

list_of_fields_from_another_table FROM other_table_name WHERE where_clause

 Inserts the data resulting from a SELECT statement into the listed columns. Be sure the number

of items taken from the old table match the number of columns they are put into!

DELETE FROM table_name WHERE where_clause

Delete rows that meet the conditions of the where_clause. If the WHERE statement is omitted,

the table is emptied, although its structure remains intact.

UPDATE table_name SET column_name1=value1, column_name2=value2, ... [WHERE

where_clause]

 Alters the data within a column based on the conditions in the where_clause.

LOAD DATA LOCAL INFILE 'path to external file' INTO TABLE table_name

Loads data from the listed file into the table. The default assumption is that fields in the file are

separated by tabs, and each data record is separated from the others by a newline. It also assumes

that nothing is quoted: quote marks are considered to be part of the data. Also, it assumes that the

number of data fields matches the number of table columns. Columns that are

AUTO_INCREMENT should have NULL as their value in the file.

LOAD DATA LOCAL INFILE 'path to external file' [FIELDS TERMINATED BY

'termination_character'] [FIELDS ENCLOSED BY 'quoting character'] [LINES

TERMINATED BY 'line termination character'] FROM table_name

Loads data from the listed file into the table, using the field termination character listed (default

is tab \t), and/or the listed quoting character (default is nothing), and/or the listed line termination

chacracter (default is a newline \n).

SELECT column_name1, column_name2, ... INTO OUTFILE 'path to external file' [FIELDS

TERMINATED BY 'termination_character'] [FIELDS ENCLOSED BY 'quoting character']

[LINES TERMINATED BY 'line termination character'] FROM table_name [WHERE

where_clause]

Allows you to move data from a table into an external file. The field and line termination clauses

are the same as for LOAD above. Several tricky features:

1. Note the positions of the table_name and where_clause, after the external file is given.

2. You must use a complete path, not just a file name. Otherwise MySQL attempts to write to

the directory where the database is stored, where you don't have permission to write.

3. The user who is writing the file is 'mysql', not you! This means that user 'mysql' needs

permission to write to the directory you specify. The best way to do that is to creat a new

directory under your home directory, then change the directory's permission to 777, then

write to it. For example: mkdir mysql_output, chmod 777 mysql_output.

Privilege Commands

Most of the commands below require MySQL root access

GRANT USAGE ON *.* TO user_name@localhost [IDENTIFIED BY 'password']

Creates a new user on MySQL, with no rights to do anything. The IDENTIFED BY clause

creates or changes the MySQL password, which is not necessarily the same as the user's system

password. The @localhost after the user name allows usage on the local system, which is usually

what we do; leaving this off allows the user to access the database from another system. User

name NOT in quotes.

GRANT SELECT ON *.* TO user_name@localhost

In general, unless data is supposed to be kept private, all users should be able to view it. A

debatable point, and most databases will only grant SELECT privileges on particular databases.

There is no way to grant privileges on all databses EXCEPT specifically enumerated ones.

GRANT ALL ON database_name.* TO user_name@localhost

Grants permissions on all tables for a specific database (database_name.*) to a user. Permissions

are for: ALTER, CREATE, DELETE, DROP, INDEX, INSERT, SELECT, UPDATE.

FLUSH PRIVILEGES

Needed to get updated privileges to work immediately. You need RELOAD privileges to get this

to work.

SET PASSWORD=PASSWORD('new_password')

 Allows the user to set his/her own password.

REVOKE ALL ON [database_name.]* FROM user_name@localhost

Revokes all permissions for the user, but leaves the user in the MySQL database. This can be

done for all databases using "ON *", or for all tables within a specific databse, using "ON

database_name.*".

DELETE FROM mysql.user WHERE user='user_name@localhost'

Removes the user from the database, which revokes all privileges. Note that the user name is in

quotes here.

UPDATE mysql.user SET password=PASSWORD('my_password') WHERE

user='user_name'

 Sets the user's password. The PASSWORD function encrypts it; otherwise it will be in plain text.

SELECT user, host, password, select_priv, insert_priv, shutdown_priv, grant_priv FROM

mysql.user

A good view of all users and their approximate privileges. If there is a password, it will by an

encrytped string; if not, this field is blank. Select is a very general privlege; insert allows table

manipulation within a database; shutdown allows major system changes, and should only be

usable by root; the ability to grant permissions is separate from the others.

SELECT user, host, db, select_priv, insert_priv, grant_priv FROM mysql.db

 View permissions for individual databases.

Handy MySQL Commands

Description Command

To login (from unix

shell) use -h only if

needed.

[mysql dir]/bin/mysql -h hostname -u root -p

Create a database on

the sql server.
create database [databasename];

List all databases on

the sql server.
show databases;

Switch to a

database.
use [db name];

To see all the tables

in the db.
show tables;

To see database's

field formats.
describe [table name];

To delete a db. drop database [database name];

To delete a table. drop table [table name];

Show all data in a

table.
SELECT * FROM [table name];

Returns the columns

and column

information

pertaining to the

designated table.

show columns from [table name];

Show certain

selected rows with

the value

"whatever".

SELECT * FROM [table name] WHERE [field name] = "whatever";

Show all records

containing the name

"Bob" AND the

phone number

'3444444'.

SELECT * FROM [table name] WHERE name = "Bob" AND phone_number

= '3444444';

Show all records not

containing the name

"Bob" AND the

phone number

'3444444' order by

the phone_number

field.

SELECT * FROM [table name] WHERE name != "Bob" AND phone_number

= '3444444' order by phone_number;

Show all records

starting with the

letters 'bob' AND

the phone number

'3444444'.

SELECT * FROM [table name] WHERE name like "Bob%" AND

phone_number = '3444444';

Use a regular

expression to find

records. Use

"REGEXP

BINARY" to force

SELECT * FROM [table name] WHERE rec RLIKE "^a$";

case-sensitivity.

This finds any

record beginning

with a.

Show unique

records.
SELECT DISTINCT [column name] FROM [table name];

Show selected

records sorted in an

ascending (asc) or

descending (desc).

SELECT [col1],[col2] FROM [table name] ORDER BY [col2] DESC;

Count rows. SELECT COUNT(*) FROM [table name];

Join tables on

common columns.

select lookup.illustrationid, lookup.personid,person.birthday from lookup

left join person on lookup.personid=person.personid=statement to join

birthday in person table with primary illustration id;

Switch to the mysql

db. Create a new

user.

INSERT INTO [table name] (Host,User,Password)

VALUES('%','user',PASSWORD('password'));

Change a users

password.(from

unix shell).

[mysql dir]/bin/mysqladmin -u root -h hostname.blah.org -p password 'new-

password'

Change a users

password.(from

MySQL prompt).

SET PASSWORD FOR 'user'@'hostname' = PASSWORD('passwordhere');

Switch to mysql

db.Give user

privilages for a db.

INSERT INTO [table name]

(Host,Db,User,Select_priv,Insert_priv,Update_priv,Delete_priv,Create_priv,D

rop_priv) VALUES ('%','db','user','Y','Y','Y','Y','Y','N');

To update info

already in a table.

UPDATE [table name] SET Select_priv = 'Y',Insert_priv = 'Y',Update_priv =

'Y' where [field name] = 'user';

Delete a row(s)

from a table.
DELETE from [table name] where [field name] = 'whatever';

Update database

permissions/privilag

es.

FLUSH PRIVILEGES;

Delete a column. alter table [table name] drop column [column name];

Add a new column

to db.
alter table [table name] add column [new column name] varchar (20);

Change column

name.

alter table [table name] change [old column name] [new column name]

varchar (50);

Make a unique

column so you get

no dupes.

alter table [table name] add unique ([column name]);

Make a column

bigger.
alter table [table name] modify [column name] VARCHAR(3);

Delete unique from

table.
alter table [table name] drop index [colmn name];

Load a CSV file

into a table.

LOAD DATA INFILE '/tmp/filename.csv' replace INTO TABLE [table name]

FIELDS TERMINATED BY ',' LINES TERMINATED BY '\n'

(field1,field2,field3);

Dump all databases

for backup. Backup

file is sql commands

to recreate all db's.

[mysql dir]/bin/mysqldump -u root -ppassword --opt >/tmp/alldatabases.sql

Dump one database

for backup.

[mysql dir]/bin/mysqldump -u username -ppassword --databases

databasename >/tmp/databasename.sql

Dump a table from a

database.

[mysql dir]/bin/mysqldump -c -u username -ppassword databasename

tablename > /tmp/databasename.tablename.sql

Restore database (or

database table) from

backup.

[mysql dir]/bin/mysql -u username -ppassword databasename <

/tmp/databasename.sql

Create Table

Example 1.

CREATE TABLE [table name] (firstname VARCHAR(20), middleinitial

VARCHAR(3), lastname VARCHAR(35),suffix VARCHAR(3),

officeid VARCHAR(10),userid VARCHAR(15),username

VARCHAR(8),email VARCHAR(35),phone VARCHAR(25), groups

VARCHAR(15),datestamp DATE,timestamp time,pgpemail

VARCHAR(255));

Create Table

Example 2.

create table [table name] (personid int(50) not null auto_increment primary

key,firstname varchar(35),middlename varchar(50),lastname varchar(50)

default 'bato');

